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1. Introduction

The classical N -body problem consisting of the interaction of N computational particles, is the key

computational issue in a number of diverse fields of science including chemistry, fluid dynamics, and as-

trophysics. For particles interacting through long range potentials the direct evaluation of their mutual

interaction nominally scales as OðN 2Þ. In order to reduce this computational cost a simple truncation of the
interaction potential appears to be a viable approach for homogeneous (neutral) systems [1], reducing the

operational count to OðNÞ. While this approximation may suffice for the modelling of the electrostatic
interaction in molecular dynamics (MD) simulations, the assumption is insufficient for problems in fluid

dynamics and astrophysics. In these cases, and for MD simulations requiring higher accuracy than war-

ranted by a simple truncation, fast methods have been devised such as the Barnes–Hut [3] and the fast

multipole method [7], as well as hybrid mesh based algorithms including the particle-mesh (PM) and the

particle–particle particle-mesh (PPPM) algorithm originally proposed by Hockney and Eastwood [9].

While fast multipole methods offer an operational cost of OðNÞ and an exact enforcement of the free-
space boundary condition, hybrid particle-mesh algorithms with an operational cost of OðN logNÞ or OðNÞ
are often found to be computationally superior for problems in simple geometries and for periodic systems.
The particle-mesh algorithm is based on the observation that the three-dimensional, free-space Green�s
function to the Laplace operator (r2) is 1=4pr, and they attain their efficiency by employing fast Fourier
transforms or fast iterative solvers for the solution of the field equation on a mesh. The density field is

constructed on the mesh from the strength of the particles using a smooth projection, which also serves to

interpolate the computed force field back onto the particles.

For particle systems involving non-smooth density fields the exact force field will contain sub-grid scales

not resolved by the PM algorithm, and an explicit particle–particle (PP) correction term (fcc) is required to

Journal of Computational Physics 184 (2003) 670–678

www.elsevier.com/locate/jcp

E-mail address: walther@inf.ethz.ch.

0021-9991/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0021-9991 (02 )00035-9

mail to: walther@inf.ethz.ch


resolve these scales resulting in the PPPM algorithm. The sub-grid scales are generally anisotropic as they

depend on the relative position of the particles on the mesh. The PPPM algorithm presented by Hockney

and Eastwood [9] reduces this anisotropy by applying an optimized Green�s function in Fourier space,
taking into account the projection steps and the differential operators involved in the particle-mesh algo-

rithm. Moreover, the modification and use of the Fourier components of the Green�s function allows free-
space boundary conditions [6,8], an advantage which is not commonly recognized. However, the required

access to Fourier space limits the choice of field solver, which may be an important factor for an efficient

implementation on parallel computer architectures [4].
Alternatively, one may obtain an isotropic sub-grid scale by providing sufficient smoothing during the

projection of the charge density. This methodology was employed by Beckers et al. [4] in a parallel, iter-

ative, finite difference based PPPM algorithm. In a two step projection procedure, the particle charge is first

projected onto the mesh using linear interpolation, and in a second step redistributed using a Gaussian

projection with a wide kernel including some 500 grid points. The cost of this second step is reduced by

replacing the redistribution with an elliptic smoother, effectively solving the heat equation to match the

width of the Gaussian kernel. The associated sub-grid scales are assumed to be isotropic and given by the

exact free-space integration of the Gaussian charge distribution. The rms errors in the force and potential
energy was found to be less than 1% for a relative cutoff of rc=h ¼ 6, where rc is the spherical cutoff distance
of the particle–particle correction, and h denotes the mesh spacing.
Another free-space PPPM algorithm that allows finite difference based solvers 1 was proposed by Theuns

[14] for application in astrophysics. In this method, the resolved, anisotropic force field is estimated from

the projected density field by evaluating the sub-grid scales in real space. The algorithm proceeds by

subtracting this estimate for the resolved field for particles in close proximity, leaving a particle–particle

correction term of the form r�1. The errors in the force and potential were found to be approximately 6%.
The present PPPM algorithm is similar to the method of Theuns [14] but uses an accurate influence

matrix technique to allow specific cancellation of the anisotropic sub-grid scales without requiring the

access to Fourier space and hence allows the use of other fast field solvers. The linearity of the problem

secures an exact particle–particle correction term, improving the overall accuracy of the method compared

to [14], and at the same computational cost.

The remainder of this Note is organized as follows: the governing equations are outlined in Section 2.

The particle-mesh and the original Hockney and Eastwood PPPM algorithm are described in Sections 3.1

and 3.2. The proposed influence matrix PPPM algorithm is described in Section 3.3, and the results and

conclusion are presented in Sections 4 and 5, respectively.

2. Governing equations

In the following, we shall consider problems in electrostatics with particles interacting through the three-

dimensional Coulomb potential

/ðxi; xjÞ ¼
1

4p�0

qiqj
jxi � xjj

; ð1Þ

where xi and qi denote the position and charge of the ith particle, and �0 is the permittivity of vacuum. Since
the three-dimensional Green�s function to the Laplacian is 1=4pr, the electrostatic potential
(UðxiÞ ¼ qi/ðxiÞ) is governed by the Poisson equation

1 A fast FFT solver was applied in [14].
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r2U ¼ � q
�0
; ð2Þ

where q is the charge density

qðxÞ ¼
Z Z Z

dðx� xiÞqi dx; ð3Þ

and dðxÞ is the Dirac delta function.
The electrostatic field (E) is computed from the potential as

E ¼ �rU; ð4Þ

and the electrostatic force acting on the particles as f i ¼ qiEðxiÞ.

3. The particle–particle particle-mesh algorithm

The PPPM algorithm comprises of two main parts: a PM step which allows solution of the smooth

component of the force field, and a particle–particle (PP) correction term, which allows accurate treatment

of the non-smooth part of the density field.

3.1. The particle-mesh algorithm

The particle-mesh algorithm proceeds by constructing the charge density field on the mesh from the

charge carried by the particles using a smooth projection

~qqðxmÞ ¼
1

h3
XN
i

W ðxi � xmÞqi; ð5Þ

where the subscript m refers to mesh quantities, ~qq is the smooth density field, and W ðxÞ is the projection
kernel. Commonly used kernels are moment conserving splines such as the linear Cloud-In-Cell (CIC), the

Triangular Cloud Shape (TCS), and higher order kernels [5,10]. The electrostatic field (~EEm) is computed
from Eq. (4) on the mesh using finite differences or direct differentiation of the Fourier components when a

Fourier solver is employed. The resolved electrostatic force (ef if i) acting on the particles is finally obtained by
interpolation

~ff i ¼ qi
XM
m

W ðxi � xmÞ ~EEm; ð6Þ

where M is the number of mesh points involved in the projection step.

The solution of Eqs. (2), (5), and (6) forms the basis of the particle-mesh algorithm, which requires that

Eq. (5) is a close approximation to Eq. (3). This is generally true for collisionless systems, i.e., for systems

where the mean particle spacing is greater than the mesh spacing, or for systems having smooth density

fields. For system involving collisions or discontinuous density fields the true force field, (f i) contains

sub-grid scales (
~~ff~ff i) such that

f i ¼ ~ff i þ ~~ff~ff i: ð7Þ

For a specific particle configuration the magnitude and distribution of the sub-grid scales will generally

depend on the smoothness and the moment conserving properties of the projection kernel. The loss of
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moments incurred in the projection step, and the accuracy and directional sensitivity of the differential

operators applied on the mesh are furthermore responsible for the anisotropy of the resolved scales as

shown in Fig. 1. The resolved electrostatic force acting between two particles does not only depend on their

mutual distance, but also on their relative position on the mesh.

3.2. The Hockney and Eastwood particle–particle correction

The particle–particle particle-mesh algorithm proposed by Hockney and Eastwood [9] is based on an

integral form of the Poisson equation (Eq. (2))

UðxÞ ¼
Z Z Z

Gðx� yÞqðyÞdy ¼ G � q: ð8Þ

The convolution (Eq. (8)) is evaluated in Fourier space

ÛU ¼ ĜGq̂q; ð9Þ

and employs an optimized Green�s function (G ¼ Gopt) to enforce a prescribed, isotropic, and hence radially
symmetric sub-grid scale. Thus,

~~ff~ffðxi; xjÞ 	 ~~ff~ffðjxi � xjjÞ; ð10Þ

and

~ffðxi; xjÞ 	 ~ffðjxi � xjjÞ 
 Rðjxi � xjjÞ; ð11Þ

where Rðjxi � xjjÞ is a prescribed function, and ~~ff~ffðxi; xjÞ and ~ffðxi; xjÞ denote the sub-grid and resolved fields
at xi induced by a unit charge located at xj, respectively. Commonly used sub-grid scale functions are
~~ff~ff ðrÞ ¼ r�1erfcðra�1Þ and ~~ff~ff ðrÞ ¼ ðr�1 � a�1ÞHða� rÞ, where a is an adjustable parameter, and H is the

Heaviside function. The optimal Green�s function is determined by combining Eqs. (5), (9), (4), and (6), and
minimizing the rms error between ~ffðxi; xjÞ and Rðjxi � xjjÞ with respect to the discrete Green�s function
(Gopt) see Hockney and Eastwood [9, p. 273]. The prescribed resolved field (R), and hence the sub-grid scale
term is computed during an initialization step of the algorithm and tabulated for efficient calculation. Thus,

Fig. 1. The particle-mesh resolved periodic force field (~ff i) induced by a unit charge placed at different relative positions of the central

mesh cell of a 323 mesh. The x component of the force field is measured along the x–y diagonal, and the solution is obtained using the

TCS kernel and fourth order finite differences. Particle locations: —, ð0; 0Þ; – –, ð1
2
h; 0Þ; - - -, ð1

2
h; 1
2
hÞ; � � �, the exact force field is computed

directly using 100� 100� 100 image particles.
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the particle–particle correction amounts to adding the isotropic sub-grid scale during the PP step of the

algorithm

f i ¼ ~ff i þ
X
j

~~ff~ffðjxi � xjjÞ; for jxi � xjj < rc; ð12Þ

where rc is the cutoff radius.

3.3. An influence matrix particle–particle correction

The present influence matrix particle–particle particle-mesh algorithm is similar to the method of local

correction by Anderson [2] and to the method of Theuns [14] by providing an estimate for the resolved field

(~EE) on the mesh. In [14], this estimate is compute in real space from the charge density (~qq) on the mesh

~EEðxmÞ 	
h3

4p�0

XL

i

~qqi
xi � xm
jxi � xmj3

; ð13Þ

where xi and xm denote the mesh points, and L is the number of mesh points involved in the estimate. The
present method replaces Eq. (13) with an accurate influence matrix technique, representing an exact ac-

count for the approximations and anisotropy incurred by the differential operators on the mesh. Thus,

during the projection step of the algorithm, the resolved electrostatic field (~EE) induced by a collection of
particles contained in a grid cell (cf. Fig. 2) is pre-computed using the influence matrix

fdEdE ¼ Cfdqdq; ð14Þ

where Cij are the components of the influence matrix describing the electrostatic field fdEdEi at the ith grid
point induced by the charge density fdqdqj at the jth grid point. The influence matrix is a M � ð3� LÞ matrix,
where M is the number of mesh points involved in the projection (Eq. (5)), and L is the number of grid

Fig. 2. Two-dimensional schematic of the PPPMi algorithm for the TCS projection kernel and two neighbouring cells (K ¼ 2) in the
particle–particle correction. The particles (d) contained within the dashed box contribute to the charge distribution of the (3� 3) mesh
points marked with a box (�). The mesh points included in the influence matrix are marked with a circle (s). The dotted lines indicate

the staggered mesh and ordering required by the TCS projection kernel.
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points included in the particle–particle correction. The factor of three results from the three components of

the E-field. The particle–particle correction is subjection to a Cartesian cutoff, and for K neighbouring grid
boxes included in the cutoff, the TCS projection kernel result in L ¼ ð2K þ 3Þ3 cf. Fig. 2. The estimated
resolved (PM) electrostatic field (~EE) is interpolated onto the particles in the neighbouring cells using Eq. (6)
and subtracted to cancel the contribution added by the PM part of the algorithm. The subsequent PP step

involves an exact r�1 correction term (hence fcci ¼ ð4p�0Þ�1x=jxj3) for free-space problems and the r�1 term
including the periodic images for periodic systems. For the periodic system, the explicit inclusion of the

images is computationally expensive and are avoided by applying the influence matrix corresponding to the
free-space problem. Hence, only the free-space component of the resolved force field is annihilated, pre-

serving the periodic images.

The influence matrix is computed as part of the initialization step of the algorithm by placing M test

particles of unit charge at different locations within a single grid cell. The density field is projected using Eq.

(5), and the Poisson equation (Eq. (2)) is solved using the fast Poisson solver applied in the PM part of the

algorithm. The electrostatic field is computed from Eq. (4) and forms the right-hand side of

C fdqdqj

n o
k
¼ fdEdEi

n o
k
; ð15Þ

where fdqdqj

n o
k
is a M �M matrix containing the charge density at the jth grid point as created by the kth

test particle, and fdEdEi

n o
k
is a M � ð3� LÞ matrix containing the corresponding electrostatic field at the ith

grid point. The influence matrix (C) is computed solving the linear system of equations (Eq. (15)). The
actual position of the test particles was found to have a negligible influence on the influence matrix provided

the test points are distinct.

The present influence matrix particle–particle particle-mesh algorithm (PPPMi) involves the following

steps:

1. Projection of the charge density field:

(a) Sort the particles in groups of particles that will assign charge density to identical grid points.

(b) For each of these groups:

(i) Perform the projection to obtain the contribution to the charge density (dq) to the surrounding
grid points

fdqdqðxmÞ ¼
1

h3
XP
i

W ðxi � xmÞqi; ð16Þ

where P is the number of particles in the group.
(ii) Compute the induced electrostatic field at the neighbouring grid cells from the charge density us-

ing the influence matrix (fdEdE ¼ Cfdqdq).
(iii) For each of the neighbouring cells, project fdEdE to the particles and subtract this contribution
fai ¼ qi

XM
m

W ðxi � xmÞfdEdEm: ð17Þ

(iv) Compute the density field (eqq) from the contributions fdqdq.
2. Solve the Poisson equation (r2U ¼ �~qq=�0) on the mesh.
3. Compute the resolved electrostatic field (~EE ¼ �rU) on the mesh.
4. Project the electrostatic field onto the particles and compute the resolved particle forces

~ff i ¼ qi
XM
m

W ðxi � xmÞeEEm: ð18Þ
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5. Compute the particle–particle correction between particles in neighbouring groups

fci ¼
XQ
j

fccðjxi � xjjÞ; ð19Þ

where Q denotes the number of particles contained in the groups.
6. Compute the total particle force as:

f i ¼ ~ff i � fai þ f
c
i : ð20Þ

The present PPPMi algorithm allows efficient implementation on distributed memory computer archi-

tectures due to the unrestricted choice of Poisson solver. The computational efficiency of the algorithm can

furthermore be improved at the expense of increased memory usage, by storing the induced electrostatic

field (fdEdE) separately for each of the particle groups. Hence, the repeated projection step (1(b)iii) conducted
for each of the ð2K þ 1Þ3 neighbours can be performed after the main projection of the density field (see
also [11]).

4. Results

To study the accuracy of the proposed PPPMi algorithm, we consider two particles of unit charge placed

in a cubic, periodic domain (Fig. 1). The electrostatic force acting between the particles is computed as

function of the interparticle spacing as one of the particles is displaced from the other along the x–y di-

agonal of the domain. The employed field solver [13] uses second order finite differences, but fourth order
accuracy is obtained by the method of deferred corrections [12]. The solution is computed for a mesh

resolution of 323 and 643, respectively, applying the TCS projection kernel and a relative cutoff (rc=h) of 2
and 3. The PPPM force is compared with the estimated exact force using 100� 100� 100 images. The
resolved force field with explicit annihilation of the anisotropic sub-grid scales (~ff i � fai ) and the particle–
particle correction term (fci ) are shown in Fig. 3 for a relative cutoff of 3 corresponding to r=h 	 5:0. The
corresponding error in the force is shown in Fig. 4. For a particle spacing below the cutoff, the error is

negligible and within the accuracy of the estimated exact solution. The maximum error occurs at the cutoff

distance, with errors of 1.1% and 0.3% for a relative cutoff of 2 and 3, respectively. The results indicate that

Fig. 3. The PPPMi force field for two particle in a periodic domain (Fig. 1). The force contributions are: +++, the particle mesh force

field with cancellation of the sub-grid scale terms (~ff i � fai ); ���, the particle–particle correction term (fci ); —, the exact force field.
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the maximum error is insensitive to the mesh resolution for constant relative cutoffs, but with a reduced

mean error as the mesh is refined.

Finally, the convergence of the proposed algorithm is demonstrated for a system of 103 particles uni-

formly distributed within the computational domain and assigned a uniform, random charge distribution in

the range ½�1
2
; 1
2
; �. The root mean square error Dfrms ¼ f �1

meanð1=N
PN

i jf i � fexactj2Þ1=2 and the maximum error
Dfmax ¼ f �1

mean maxi jf i � fexactj, fmean denoting the mean force, are shown in Table 1 for mesh resolutions (Ng)

of 163, 323, and 643, respectively. The particle–particle correction extends from K ¼ 2 to 8 neighbours. Both
second and fourth order finite difference solutions are considered, and the error is computed from the
solution obtained on a 1283 mesh using 16 neighbours. Second and fourth order convergence is recovered

from the test cases (cf. Table 1) with a mean error of 2% for the second order solution computed on a 163

mesh using K ¼ 2 neighbours, and 0.005% for the fourth order solution obtained on a 643 mesh using

K ¼ 8 neighbours.

Table 1

Convergence study of the root mean square error (Dfmean), and the maximum error (Dfmax) of the electrostatic force acting between
1000 randomly distributed charged particles in a cubic and periodic domain

Ng K FD Dfmean (%) Dfmax (%)

16 2 4 0.868 5.527

16 2 2 2.132 15.608

16 3 4 0.076 0.947

32 3 4 0.115 0.980

32 4 4 0.039 0.270

32 4 2 0.738 8.319

64 3 4 0.178 1.693

64 4 4 0.067 0.480

64 4 2 1.161 8.143

64 8 4 0.005 0.066

64 8 2 0.230 2.317

128 16 4 – –

The particle charge is sampled from a uniform distribution, and the solution is obtained using second and fourth order finite

difference (FD) on a 163, 323, and 643 mesh resolution (Ng), respectively. The TCS projection kernel is used throughout and the results

are compared with the solution obtained on a 1283 mesh using 16 neighbours in the particle–particle correction (K ¼ 16).

Fig. 4. The error (Dfx) in the fx component of the PPPMi force for different mesh resolutions and relative cutoff radii for the particle
configuration shown in Fig. 1. —: 323 mesh points, rc=h ¼ 2, – – –: 323 mesh points, rc=h ¼ 3; - - -: 643 mesh points, rc=h ¼ 2; � � �: 643
mesh points, rc=h ¼ 3.
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5. Conclusion

An improved particle–particle particle-mesh algorithm has been presented for the fast solution of N -
body problems. The proposed algorithm uses an influence matrix technique to annihilate the anisotropic

sub-grid scales incurred by the truncation of the moments by the projection step and by the truncation

errors of the finite differences typically used in fast iterative Poisson solvers. The subsequent particle–

particle correction step involves the exact r�1 term. The algorithm allows the use of ‘‘black-box’’ fast

Poisson solvers, hence offering greater implementational flexibility than the original PPPM algorithm.
The methodology has been extended to problems in fluid mechanics using the immersed boundary

technique for the particle (vortex) method, and will be presented in a separate paper [11]. The PPPMi

algorithm furthermore allows consistent treatment of higher order singularity distributions commonly used

in boundary element methods.
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